Algebraic and Geometric Intersection Numbers for Free Groups

نویسنده

  • SIDDHARTHA GADGIL
چکیده

We show that the algebraic intersection number of Scott and Swarup for splittings of free groups coincides with the geometric intersection number for the sphere complex of the connected sum of copies of S × S.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersection homology Betti numbers

A generalization of the formula of Fine and Rao for the ranks of the intersection homology groups of a complex algebraic variety is given. The proof uses geometric properties of intersection homology and mixed Hodge theory. The middle-perversity intersection homology with integral coefficients of a compact complex n-dimensional algebraic variety X with isolated singularities is well known to be...

متن کامل

Differential approach for the study of duals of algebraic-geometric codes on surfaces

In this article, a differential construction for the dual of an algebraic-geometric code on a projective surface is given. Afterwards, this result is used to lower bound the minimum distance of this dual code. The found bounds involve intersection numbers of some particular divisors on the surface. AMS Classification: 14J20, 94B27, 11G25.

متن کامل

Algebraic pruning: a fast technique for curve and surface intersection

Computing the intersection of parametric and algebraic curves and surfaces is a fun damental problem in computer graphics and geometric modeling This problem has been extensively studied in the literature and di erent techniques based on subdivision interval analysis and algebraic formulation are known For low degree curves and surfaces algebraic methods are considered to be the fastest whereas...

متن کامل

Lusztig’s Geometric Approach to Hall Algebras

The introduction of l-adic cohomology by M. Artin and Grothenieck was motivated by the Weil conjecture concerning the number of rational points of algebraic varieties over finite fields. Since its introduction in the early 60s, l-adic cohomology theory has been used in the representation theory of finite Chevalley groups in a “misterious way”. The first application of l-adic cohomology and inte...

متن کامل

On the intersection of infinite geometric and arithmetic progressions

We prove that the intersection G ∩A of an infinite geometric progression G = u, uq, uq2, uq3, . . . , where u > 0 and q > 1 are real numbers, and an infinite arithmetic progression A contains at most 3 elements except for two kinds of ratios q. The first exception occurs for q = r1/d , where r > 1 is a rational number and d ∈ N. Then this intersection can be of any cardinality s ∈ N or infinite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008